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Two genetic algorithms for the single- and multiobjective design of combinatorial experiments were applied
to the optimization of a solid catalyst system active in the selective catalytic oxidation of propane to propylene.
The two different optimization strategies, namely, the single objective optimization of the yield and the
multiobjective optimization of the conversion and selectivity were implemented and compared. It was observed
that the multiobjective approach optimized the yield in a similar way compared to the single objective
approach. With respect to the selectivity, however, the multiobjective outperformed the single objective
approach. It was also found that by applying the multiobjective optimization more interesting possible
combinations were discovered.

1. Introduction

High-throughput experimentation (HTE) and combinatorial
methods for the development of new catalysts are attracting
increasing attention in both industry and academia.1-6 The
challenge of finding an optimal catalyst composition and
preparation method for a specific reaction has, during the
last 10-15 years, led to the preparation of catalysts with
active elements, supports, and dopants selected from increas-
ingly large pools and preparation methods. Consequently,
the optimal formulations have to be searched for in high-
dimensional descriptor space. Nowadays, 20-30 descriptors
are not exceptional. For high dimensional spaces, the
traditional designs of experiments (DoE) methods are no
longer reasonable as many prescreening experiments are
required. The need is for intelligent methods able to perform
an efficient screening in multimodal search spaces by only
performing a minimum number of experiments.

For such purpose, evolutionary global optimization meth-
ods, such as genetic algorithms,7,8 have become very
attractive in heterogeneous catalysis, mainly because of the
possibility to establish a straightforward correspondence
between optimization paths followed by the algorithm and
the channels of the high-throughput reactor in which the
catalysts proposed by the algorithm are subsequently tested.

In materials science and in heterogeneous catalysis, genetic
algorithms have been used for approximately ten years9-24

with Wolf et al.25 being the first to establish an evolutionary
approach to optimize the combinations of elements of
multicomponent solid catalysts. However, up to recently,26

the search has been conducted toward one sole objective as
Wolf and co-workers described for the oxidative dehydro-
genation of propane.25 In real world problems and especially

in catalysis, several, often conflicting objectives generally
must be taken into account. In addition, there is the need
not only to find the optimal catalyst composition, but various
compositions with similar efficiency to the best one, for
instance, to allow more robust further development or the
circumvention of patent constraints. Thus, methods that are
able to find many optimal solutions with respect to several
goals are needed. In our group, a multiobjective GA was
applied with respect to two conflicting objectives: the
conversion to nitrogen and the temperature at which the yield
is maximum, that is, the so-called “peak” or “light-off”
temperature, for the reduction of NO with C3H6.

26 Because
most of the restricted compounds are emitted in the early
phase of the driving cycle, when the catalyst is still cold, a
low temperature for high conversion is preferable. Also
Baumes investigated in his thesis and in several recent studies
the application of multiobjective optimization in heteroge-
neous catalysis.27-29 However, one question is currently
unanswered, that is, if the multiobjective approach is superior
to the single-objective, as the complexity of the problem may
increase considerably as a function of the objectives. In
addition, it is unclear, if there is really a need for sophisti-
cated algorithms in catalysis, which are able to deal with
several objectives or if a reformulation of the problem
definition to result in only one objective is more reasonable
because of the much simpler implementation of the algo-
rithm.25

Propene is an important intermediate in many chemical
processes like the production of polymers, including polypro-
pylene, polyurethane, and epoxy resins along with other
materials such as acrylonitrile, propene oxide, and isopro-
panol. The main process for the production of propene is
steam cracking of hydrocarbons.30 Very high temperatures
(∼750 °C) are needed to overcome the thermodynamic
limitations. When exposing hydrocarbons to high tempera-
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tures, there is always a possibility of coke formation and
therefore regeneration of the catalyst by burning off the coked
deposits, as well as periodic process shutdown are required.
The oxidative dehydrogenation (ODH) of propane may offer
a promising alternative for the production of propylene
compared to the conventional route described above. There
are no thermodynamic limitations and propane can be
oxidized at lower temperatures. Beside that, the reaction
mixture contains oxygen. Therefore, the risk of catalyst
deactivation by coking is reduced, which is very important
from the industrial point of view.

In this work, we focus on a comparison of a single- and
a multiobjective, evolutionary approach to experimental
optimization of oxidative propane dehydrogenation (ODH).
The composition and combination of metal oxide catalysts
consisting of combinations of 12 elements, (Te, Nb, Al, V,
Ni, Cr, Co, Fe, Mo, Li, Sr, Mg), which could present a high
catalytic activity and lifetime, was chosen as the system to
optimize. The pool of information has been chosen on the
basis of knowledge collected from the literature.31-39 In the
oxidative dehydrogenation, the products from total combus-
tion are thermodynamically favored. The viability of the
process relies heavily on the design of a catalyst to overcome
the selectivity challenge. Therefore, two important factors
that determine the quality of the catalyst for the ODH are
the activity and the selectivity. On the other hand, activity
and selectivity can be combined to the single parameter yield
of the desired product, which is often what is optimized in
industrial practice. Therefore, we follow two strategies for
the optimization of the catalytic process: in the single-
objective approach, the yield to propylene was chosen as
the objective, whereas in the multiobjective approach, both
the conversion and the selectivity were selected.

The difference in the multiobjective optimization is that
catalysts with high selectivities presenting low yields will
not be discarded. We compare and discuss the results of the
different approaches applying the two different algorithms,
emphasizing the differences in the activity and catalytic
composition.

2. Experimental Section

The mixed oxide catalysts were prepared by the activated
carbon route40,41 using metal nitrates as precursors. Activated
carbon (KK 1407 Carbotec/Rutgers) from the same activation
batch was used as exotemplate because of its exceptional
properties: high purity (ash content <0.5 wt %) and very high
BET surface area (1656 m2/g) and pore volume (0.79 cm3/
g). The pore system consists of a very high fraction of
micropores with diameters <1 nm. The particles are almost
uniform spheres with diameter of 200-400 µm. The
impregnation was carried out manually using differently
concentrated solutions, depending on the solubility of the
precursors. The metal precursors used were Co(NO3)2,
Fe(NO3)3, Ni(NO3)2, Al(NO3)3, Cr(NO3)3, Mg(NO3)2, LiNO3,
Na3VO3, all from Fluka, puriss p.a; H6TeO6, (NH4)6 Mo7O24,
NH4NbO(C2O4)2, from Sigma-Aldrich.

After the precursor solutions were mixed in a beaker,
impregnation of the activated carbon was carried out using
a slight excess of solution, that is, for 1 g of activated carbon

0.89 mL of solution was used. The wet carbon was
furthermore mixed to get a homogeneous distribution over
the carbon support. Later on, the solid material was dried at
60 °C overnight and calcined at 550 °C for 45 min in air to
combust the carbon, resulting in the formation of the mixed
metal oxides.

2.1. Catalytic Testing. A stage II high-throughput screen-
ing concept using a 49 parallel stainless steel gas-phase
reactor from hte Aktiengesellschaft, built according to the
principles described in Kiener et al.,42 was used for testing
the catalytic activity of the mixed oxide catalysts in the
selective oxidation of propane. The catalysts were activated
at 400 °C for 15 min before catalytic testing. The measure-
ments were performed using a reaction mixture (C3H8/O2/
N2 ) 4/3/293) at GSHV 12.255 h-1 and a reactor pressure
of 1.2 bar. The catalytic activity was evaluated at 400, 450,
and 500 °C. Each catalyst was analyzed twice, and the
analysis took 5 min for each sample. The complete testing
of all 49 catalysts at up to 3 different temperatures took about
24 h.

The effluent gas was analyzed by an on line gas chro-
matograph (Agilent Technologies 6890N) equipped with a
Restek RTX-1 #10187 column, methanizer, and a flame
ionization detector. The carbon mass balance on the carbon
atoms of propane was monitored and typically closed to 100
( 5%.

3. Genetic Algorithms for Evolutionary Experimental
Design

Evolutionary techniques such as genetic algorithms are
global search techniques, which can be used for experimental
design. They include heuristic strategies for searching for
new and improved solutions in an intelligent way. In general,
GAs are a class of nonlinear, adaptive, and heuristic methods
for solving optimization and search problems. In nature,
populations evolve over many generations following the
principle of natural selections and the “survival of the fittest”.
By adapting this principle from nature, genetic algorithms
can generate artificial populations to undergo an evolution
that approach an optimal solution of a predefined problem.

Genetic algorithms are also suited for experimental design
with respect to several goals or objective functions. In single
objective optimization, the relative order of the solutions in
a population is clearly defined in the objective space, and
only one global best fitness exists. The situation is completely
different in the case of multiobjective optimization as two
optimal solutions may differ from each other in the objective
space. Several strategies have been developed over the last
decades in order to deal with multiobjective optimization
problems. Weight based techniques are the oldest techniques.
The basic concept is to combine several objective functions
into one overall objective function. The multiobjective
problem is reduced to a single-objective problem and
methods for solving single-objective optimization problems
can be applied without modification. Thus, the implementa-
tion is very simple; however, a major drawback is how to
normalize, prioritize, and weight the contribution of the
various objectives. In catalysis, this approach was used by
Wolf et al.25 In the case of modern evolutionary multiob-
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jective optimization techniques all the objectives are opti-
mized at the same time. The optimal solution is a composite
of all optimal solutions with respect to the multiple objectives
and usually forms a set of optimal trade-off surfaces that
includes the single objective optimum. This set of optimal
solutions is designated the Pareto-optimal set. In multiob-
jective optimization, generally the goal is to approximate this
set and to keep it as diverse as possible.

3.1. Optimization Framework. To compare the mere
differences of the single- and multiobjective approaches, in
both cases standard implementations that are known to
perform well in literature were used. The optimum size of
the population depends on many factors and is a critical
factor as a too big population leads to a low convergence
and a too small population is more likely to converge toward
a local optimum. In catalysis, in addition, the reactor or
testing size has to be considered. A good choice for the
minimum population size for expensive problems is given
by the probability to reach each point in the search space as
defined for binary encodings by Reeves.43 In this study, the
initial population size, parent population size, and offspring
population size were all set to 24 individuals, which
represents a good compromise between speed of convergence
and the probability to reach each point in the search space,
which is in this case >99.99%. In a preliminary test, 48
randomly chosen catalysts were tested. This population was
identical for both algorithms to ensure the same starting point
for the optimization process. Based on the results obtained
in our previous paper,47 a binary representation was chosen,
which has the advantage of tailoring the minimum distance
of the individuals in the search space by the possibility to
choose the number of bits for the representation. This, in
addition, reduces the tendency to form clusters.47 The genetic
variation operators were in both cases the classic bit-flip
mutation operator with a probability of 0.067 and a one-
point crossover operator with a probability of 1. Maintaining
diversity in the population is another critical factor and
several diversity preservation methods exists, some of them
were investigated and summarized in a recent study by
Farruseng and Clerc.44 By using a binary tournament
selection operator it is guaranteed to keep the diversity in
the population as high as possible during the mating selection
step. In addition, in the case of the single objective approach,
a restricted tournament replacement strategy45,46 with a
window size of 5 was applied to control the diversity in the
population by not only searching for the one single best
catalyst but also for differently composed solutions as in the
case of a multiobjective approach. Elitism was implemented
by a deterministic addition of the best catalyst to the mating
pool. The multiobjective implementation was performed
according to our previous studies.47 The strength Pareto
evolutionary algorithm (SPEA-2)48 was used and imple-
mented based on the platform and programming language
independent interface for search algorithms (PISA).49 SPEA-2
is a so-called Pareto-based algorithm, which operates toward
two goals: minimization of the distance toward the Pareto-
optimal set, and maximization of the diversity within the
Pareto-optimal set. Elitism is implemented in SPEA-2 by
using an additional population, the so-called “external” or

“archive” population that is composed of the best 24
nondominated individuals during the search and is used in
combination with the regular population as mating pool. If
less than 24 nondominated individuals were found, the
archive is filled up with dominated individuals. In contrast,
in the single objective approach only the last population is
used to generate the offspring population and only the best
individual found so far is preserved. The diversity along the
Pareto-optimal front is preserved through a density estimation
technique that uses a k-nearest neighbor clustering algorithm.
For details about the implementation, we refer to the original
publications.48 For both algorithms, random numbers were
obtained by RAMDOM.ORG,50 which offers true random
numbers generated from atmospheric noise. It should be
noted that it is technically possible to use SPEA-2 as a single
objective optimization algorithm. It can be easily shown that
a single objective SPEA-2 performs poorly compared to a
standard single objective GA. We tested this on a number
of test function. The reason is that the concept of Pareto
selection can not be directly applied to single objective
problems because the Pareto-front is composed by only one
(the best) solution. All other solutions are dominated by this
solution. In addition, the k-means clustering algorithm, which
is used to keep diversity along the Pareto front, also does
not operate in the desired way.

4. Representation of Solid Catalyst and Definition of
the Space to Be Explored

The codification of the catalysts was performed according
to the rules described in detail in Gobin’s work.47 A 4b-
10b-16b type of encoding was used, that is, four bits for the
promotor elements, 10 bits for the main elements, and 16
bits for the concentrations of the elements. The main
elements were Al, V, Ni, Cr, Co, Fe, Mo, Li, Sr, and Mg; in
addition, Te and Nb were chosen as the promoters. Thus a
total of 12 elements in different combinations and varying
concentrations compose the search space. Three boundary
conditions were defined to furthermore reduce the search
space: the maximum number of main elements in a catalyst
was limited to four or fewer (constraint C.1). The sum of
the concentration of the promoter elements was limited to
10%; a catalyst could contain both promoter elements (C.2).
Superimposed on these self-introduced boundary conditions
was the requirement that the sum of all concentrations was
equal to 100% (C.3). The boundary conditions were satisfied
by applying repair algorithms as additional stochastic varia-
tion operators after performing the standard variation by
crossover and mutation.26,47

5. Results and Discussion

5.1. Errors of the Reactor Set up and Synthesis. The
conversion distribution of the reactor was obtained by placing
the same amount of a reference 5 wt % Pt/Al2O3 catalyst
from the same batch into 24 channels of the reactor. The
other 25 channels were left empty to determine whether the
reactor channels are influencing each other, which should
not be the case if the flow rate and the dead time are
sufficiently high to guarantee stable conditions. Figure 1
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shows the distribution of the maximum conversion of
propane combustion at operating conditions.

From Figure 1, it can be seen that the channels did not
influence each other. The average conversion is 42.57%. The
conversion distribution shown in Figure 1 is very narrow
with a maximum error of 4% (1.4% standard deviation). In
no case was the maximal conversion of the empty channel
>6%. The Pt/Al2O3 catalyst was used to test the reactor
because of its long time stability.

The reproducibility of the synthesis was checked by
performing several tests on two series of 3 equal catalysts,
composed of 3.33 mol % Te, 6.66 mol % Nb, 9.00 mol %
Al, 63.01 mol % Cr, 18.00 mol % Fe and 3.33 mol % Te,
6.66 mol % Nb, 31.11 mol % Ni, 44.45 mol % Cr, 17.78
mol % Fe. The maximum conversions were 21.10 and 26.27,
with errors of 2%.

5.2. Experimental Optimization of the Propane Dehy-
drogenation. In this section, we first compare and discuss
the experimental results obtained by the single objective
(yield) and multiobjective (selectivity and conversion) ap-
proach, by comparing the two populations, which are used
as mating pool to generate offspring populations. These are
the single objective population and the SPEA-2 archive
population.

Figure 2A/B shows the evolution of the yield, the
conversion, and the selectivity of the two populations. As
can be clearly seen in Figure 2A-1/B-1, the average yield
improved with each generation in both cases. The best
solution of each generation is represented by the outlier of
the boxplot. The best catalysts with yields close to 12% were
found by SPEA-2 after 5 generations. The same trend was
observed for the selectivity and conversion. As shown in
Figure 2A-3/B-3, the average selectivities are 28% for the
single and 45% for the multiobjective algorithm after six
generations. Also the average conversions are higher in the
case of the multiobjective approach. The apparently poor
results of the single objective approach are in parts caused
by the comparison of the single objective population and
the archive population of SPEA-2. The archive keeps track
of the best individuals along the optimization with respect
to both objectives. In contrast, the single objective population
is strongly influenced by the stochastic and heuristic nature

of the algorithm, that is, for instance, poor solutions may
emerge, and good solutions may disappear.

To have a fair comparison, we created a new population,
denoted as the archive population of the single objective
approach. Similar to the way the multiobjective archive
population is created, the single objective archive population
consists of the 24 best catalysts found so far. The major
difference compared to the SPEA-2 archive is that no Pareto-
selection is performed and the catalysts are only selected
with respect to their yield. However, one should note that
this population is not used by the algorithm, in contrast to
the SPEA-2 archive population, which is directly used to
generate the offspring population. By comparing the yields
of the archive populations in Figure 2B-1/C-1, one can
clearly see that the single objective algorithm performed as
good as the SPEA-2 algorithm. The slightly better yields
found by SPEA-2 are not significant to be discussed on the
algorithmic level. Likely, the inferior results are due to the
stochastic nature of the algorithm. However, it is remarkable
to note, that even if the yield was not directly optimized in
the case of the multiobjective algorithm, that is, at no time
the yield is explicitly calculated, the results are comparable
and even slightly better. This gives already evidence that
the multiobjective approach does not perform worse. To gain
a deeper insight in the way the algorithms evolved the
catalyst populations, conversion and the selectivity of the
archive populations will be compared in the following.

In Figure 2B-2/C-2, the evolution of the conversion is
shown. The average results are higher and the distribution
more narrow in the single objective case. In contrast, the
average selectivities shown in Figure 2B-3/C-3, are higher
in the case of the multiobjective algorithm. For the single
objective algorithm, a decrease can be observed after the
fourth generation as can be seen in Figure 2C-3. These results
clearly indicate that the single objective algorithm predomi-
nantly evolved by improving the conversions and not the
selectivities. In contrast, the multiobjective approach, im-
proved the yields by improving both conversion and selec-
tivities, however, stronger focusing on the improvement of

Figure 1. Distribution of measured propene conversion to carbon
dioxide in the reactor at a reaction temperature of 500 °C. Even
positions are filled with 5% Pt/Al2O3, and uneven positions with
quartz.

Figure 2. Evolution of the yield, conversion, and selectivity for
the solutions of the single, the SPEA-2 archive, and the single
archive population.

910 Journal of Combinatorial Chemistry, 2009 Vol. 11, No. 5 Llamas-Galilea et al.
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the selectivities as can be seen in Figure 2B-2 compared to
Figure 2B-3.

This situation can also be seen in Figure 3, which shows
the archive populations of both approaches for the six
generations in the two-dimensional objective space, that is,
plotted as the conversion versus the selectivity. Such kinds
of plots are generally denoted as Pareto plots, as Pareto
optimal solutions can be easily identified. The SPEA-2
solutions are well distributed along the Pareto space, and
even solutions which show a high selectivity but a low
conversion are kept in the archive population of the sixth
generation. In contrast, this was not the case for the single
objective approach. The strongest direction of attraction is
visualized Figure 3A by an arrow. The arrow corresponds
to the product selectivity times conversion. Solutions in the
boundary region, that is for instance, the high selectivity
region, were lost and the evolution only took place toward
catalysts showing a high conversion. This is perfectly in line
with the previously discussed results and furthermore shows
that the single objective algorithm is converging toward
different catalysts than the multiobjective. In the following,
we will analyze the results of the archive populations in terms
of catalyst compositions and compare them to the catalytic
results.

In Figure 4, the evolution of the total concentration of
elements in the populations is shown for the most significant
elements. Both algorithms are clearly converging toward Ni
and Cr containing catalysts showing the highest fraction of
around 650 mol % (This value represents the sum of the

concentrations of one specific element of all catalysts in a
single generation) in the populations; however, the trend is
more pronounced for the multiobjective algorithm. In addi-
tion to these two elements, the single objective algorithm
also keeps a high fraction of Co-containing catalysts in the
population. In contrast, for the multiobjective algorithm only
a minor fraction of catalysts contains Co, which is, in
addition, showing a slightly negative trend. In summary, Ni,
Cr, and Co compose the elements which have a high
influence on the catalytic activity and were found by both
algorithms. Al seems to be an important element with an
increasing amount in the populations. In contrast, V and Mo
showed a clear detrimental effect in the catalytic activity
disappearing completely after two or three generations
contrary to the active catalysts in literature, which mainly
are composed of these two elements; the trend for Fe is
similar in both approaches having a higher negative con-
vergence rate for the multiobjective algorithm although in
both cases the incidences do not disappear completely. As
we will show later, however, Fe composes an important
element to obtain high selectivities. The trend for Mg is not
clear for both algorithms. The occurrence of Mg fluctuates
keeping a high fraction of Mg in the populations. The reason
can be that the addition of Mg to the catalysts produces a
decrease in the catalytic activity. On the other hand, the
selectivity increases remarkably. The trends for Li and Sr
(not shown in Figure 4) were quite similar in both approaches
showing a distinct negative effect, while only keeping a low
fraction of these elements in the catalysts. The analysis of

Figure 3. Visualization of the evolution of the archive populations in the objective space.

Figure 4. Evolution of the concentration of elements in the archive populations.
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the evolution of the element concentration in the population,
does not explain the trends shown and discussed in Figure
2. To obtain a deeper understanding why the single objective
approach evolved predominantly through improvement of
the conversion, contrary to the multiobjective approach, the
catalyst combinations in the objective space will be discussed
in the following.

In Figure 5, the archive populations of the sixth generation
are shown in the objective space. The most important catalyst
combinations in the high conversion and high selectivity
region are highlighted. It can easily be seen that most of the
individuals of the single objective population are located in
the high conversion region around the area with the strongest
direction of attraction as shown in Figure 3 or Figure 5 by
an arrow. In contrast, the individuals of the SPEA-2 archive
are well distributed along the objective space. Ni composes
the major component in nearly all catalysts, in the high
conversion region as well as in the high selectivity region.
By adding Cr to Ni, highly active catalysts are obtained,
predominantly with selectivities below 30%. Te, Mg, and
Al increase the selectivities to up to 40%, without resulting
in a decreased activity. These catalysts compose the majority
of the population of the single objective approach as can be
seen in Figure 5. The selectivities can be further improved
up to 50% by addition of Co and by fine-tuning the relative
concentrations of the elements in the catalysts. Further
increase of the selectivities up to 60% is possible by forming
Te-Al-Ni catalysts with Mg, Co, and Fe. The conversion,
however, drops to below 20% or even 10%. These combina-
tions were only found by the multiobjective approach,
because of their poor performance with respect to their
activities, and thus their yields. Another interesting range of
catalysts are the Ni-Cr combinations, which were found by
both algorithms. Addition of Nb to Ni-Cr leads to catalysts
with low selectivities of below 25%, while an addition of
Te leads to catalysts with selectivities up to 50%. The catalyst
showing the highest selectivity in the single archive popula-
tion is a combination of Al, Co, and Mg with selectivities
slightly below 50%. From the chemical point of view,

combinations of elements, showing high selectivities are
more important than catalysts with a similar yield but a low
selectivity.

Interestingly, the catalyst formulations shown above are
completely different to the ones obtained by Wolf et al.25

Their catalysts are based on vanadium and molybdenum. In
our system, these elements had a negative influence on the
catalytic activity. Also our best catalysts are slightly better
than ones discovered by Wolf et al.25 We tested some of
the best catalysts, such as Te3,33Nb9,99Ni28,89Cr26,49Co31,3 and
Nb6,66Ni20,01Co33,33Mg40,03, in a single tube reactor to have
more accurate data and observed yields of ∼12%.

One should note that the results observed and compared
in this contribution are at an early state of the optimization.
Further evolution, however, would accentuate the results, that
is, the single objective population would be strongly attracted
to the high conversion region along the strongest direction
of attraction (see Figure 3 or 5). SPEA-2, in contrast, would
furthermore diversify and improve the results through
optimization of both objectives. In conclusion, the most
significant benefit of the multiobjective approach is the way
catalysts in the boundary region of the objective space are
treated. By only performing a single objective optimization,
catalysts combination showing a low yield will be removed
from the population, although possibly performing very good
in terms of selectivity or conversion. It is therefore more
likely to find more interesting possible combinations by
performing a multiobjective approach.

6. Conclusions

Genetic algorithms or evolutionary optimization ap-
proaches have been found to have a significant potential
toward the identification of improved catalyst materials. As
has been shown for the selective propane dehydrogenation,
GAs are a fast and convenient way, as they do not need to
be trained and do not need information about gradients or
other specific information on the problem to be solved.

In this work, we have applied two different strategies using
single objective optimization (yield) and multiobjective
optimization (conversion vs selectivity). Although optimizing
two objectives simultaneously, the multiobjective approach
performed slightly better compared to the single objective
approach with respect to the optimization of the yield. This
is remarkable, as the yield is not explicitly calculated during
the multiobjective optimization and, therefore, not directly
optimized. In addition, the multiobjective algorithm was able
to find catalysts in the extreme regions, which were not found
by the single objective algorithm. The reason is, that the
single objective approach only optimizes in one direction,
whereas the multiobjective approach optimizes all objectives
simultaneously and is able to keep individuals at the extreme
boundaries. Generally speaking, the multiobjective approach
should be preferred to the single objective as it performs at
least as good with respect to the optimization of the yield,
and, in addition, it is more likely to find more interesting
possible combinations, as also selectivity and conversion are
optimized simultaneously.

Figure 5. Visualization of catalyst composition of the sixth archive
populations in the objective space.
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